Tagged: Euclide

Être et expérience possible : Le Kant de Heidegger 2

Ce neuvième chapitre de mes études kantiennes (voyez Table des matières : Pensées LXIII à LXX) complète en particulier le chapitre Vers une anthropologie métaphysique : Le Kant de Heidegger (x).

Les citations de ces deux auteurs sont entre guillemets et en italiques. (Les numéros de page pour les citations de Kant sont tirées de ses Œuvres philosophiques complètes dans la collection La Pléiade 1985. Pour Qu’est-ce qu’une chose ? de Heidegger, édition Tel Gallimard 1971, et Le principe de raison, Tel Gallimard 1962.)

i
Tiré des Prolégomènes à toute métaphysique future

La proposition « Il n’y a pas de particules élémentaires » est un jugement analytique a priori (tous les jugements analytiques sont a priori), car sont analytiques et a priori les propositions « tout corps est étendu » et « aucun corps n’est inétendu (simple) », et une particule élémentaire est un corps simple.

*

Pour Hume, « la mathématique pure ne contient que des propositions analytiques » (38), ce qui, dit Kant, s’est avéré très préjudiciable à la philosophie. On peut y voir en outre, a posteriori, l’origine de l’idée récurrente selon laquelle la mathématique est une logique pure (fondée sur « le pur et simple principe de contradiction »). Le théorème de Gödel a pourtant fait litière de l’absolutisme logique.

Que les géométries non euclidiennes soient logiquement équivalentes à la géométrie euclidienne ne contredit en rien l’intuitionnisme kantien puisque la géométrie sphérique est intuitive sur un espace sphérique et la géométrie hyperbolique intuitive sur un espace hyperbolique. De même, que l’on ne puisse discriminer logiquement entre elles est sans portée quant au fait que l’expérience possible repose sur l’intuition autant que sur l’entendement. Si le postulatum d’Euclide, non démontré, peut être remplacé, les axiomes a priori et non intuitifs (les Grundsätze de Pasch ou le principe de contradiction) peuvent l’être tout autant, et tout aussi arbitrairement.

*

« Mon entendement … ne prescrit aucune règle aux choses elles-mêmes » (65)

On ne pourrait connaître a priori aucune loi de la nature si les choses de la nature n’étaient pas de simples phénomènes. (Or nous connaissons a priori des lois de la nature.)

Si les objets nous étaient connus en soi, alors, comme l’espace où ils nous sont représentés est a priori (en nous), cet espace serait une fiction : les choses ne s’accordent pas nécessairement « à l’image que nous nous en faisons nous-mêmes et par avance ».

On sait que, dans la théorie de l’évolution, un organe est le produit d’une adaptation au milieu naturel en vue de fins, que donc nos organes et notre cognition sont adaptés évolutivement à leurs fins naturelles. Or nous savons aussi que notre cognition est une représentation particulière et partielle, parcellaire (les ultrasons échappent à notre ouïe etc). Mais même ces ultrasons et tout le domaine empirique sur lequel s’étend à l’infini notre connaissance grâce à la technique, sont contenus par avance dans notre représentation ; les ultrasons imperceptibles par notre ouïe nous deviennent un objet de connaissance suivant les lois que notre entendement prescrit à la nature.

*

Si l’entendement prescrit ses lois à la nature (aux phénomènes), l’entendement n’est pas un produit de la nature.

*

Les idées de la raison – l’idée psychologique (l’âme), l’idée cosmologique (le monde) et l’idée théologique (Dieu) – nous fournissent l’unité de l’expérience que nous ne pouvons obtenir par le seul usage empirique de l’entendement. La raison requiert ces idées régulatrices devant la vacuité d’une connaissance du divers empirique sans unité ni totalité à défaut de ces idées.

Les jugements sur l’expérience en tant que totalité sont dits transcendants. Ce qui nous rend cohérents les jugements d’expérience, les connaissances empiriques parcellaires de la synthèse continue ad infinitum, ce sont ces jugements transcendants qui sortent du cadre de la connaissance empirique en tant que telle.

L’absolu n’a pas pour effet premier ou pour fonction première de donner au sujet pensant un sentiment de « sécurité morale » et de bien-être émotionnel, une idée du philosophe pragmatique William James. En tant que sous cette appellation – l’absolu – peuvent être subsumées les trois idées kantiennes de la raison, l’absolu répond premièrement à un intérêt de la seule raison pure spéculative : assurer un jugement sur l’expérience en tant qu’unité et totalité, alors que l’expérience elle-même ne fournit que des connaissances en quelque sorte locales sur ses parties, connaissances qu’il ne peut suffire d’additionner  pour atteindre un tout hypothétique puisque aussi bien la connaissance empirique est cumulative ad infinitum, c’est-à-dire incomplète à tout moment et pour toujours (sans que l’on puisse même parler de perfectionnement de cette connaissance empirique autrement que dans un sens très relatif et restreint). À aucun moment le pathos n’entre ici en ligne de compte ; les nécessités de la connaissance spéculative rendent inévitables les idées transcendantales. L’absolu n’a que secondairement un effet moral : « Les idées transcendantales servent donc, sinon à nous instruire positivement, du moins à annuler les affirmations impudentes du matérialisme, du naturalisme et du fatalisme, qui restreignent le domaine de la raison, et à ménager ainsi une place pour les idées morales hors du champ de la spéculation. » (149)

*

Le moi n’est pas un concept (n’est pas le concept d’un sujet absolu) mais seulement « la relation des phénomènes internes à leur sujet inconnu » (114). On ne peut pas prouver la permanence du sujet (de l’âme) (permanence de la substance) car une telle proposition est un jugement synthétique a priori en dehors de l’expérience.

*

La cause par liberté produit un effet sans être elle-même l’effet d’une cause dans le temps. Cette cause par liberté ne peut être que celle d’un être intelligible, c’est-à-dire immatériel (qui ne peut être représenté que par l’entendement, sans qu’aucune intuition sensible ne puisse porter sur lui).

Une cause par liberté peut-elle tendre à autre chose qu’à la dissolution de la causalité naturelle, donc de la nature elle-même ? L’acte de renoncement de la volonté, chez Schopenhauer, semble bien être une cause par liberté. Que peut-elle, la liberté, chercher à produire dans le phénomène, dans la nature ?

(L’exposition de la liberté dans les Prolégomènes est relativement « banale » par rapport aux œuvres morales ultérieures de Kant : il s’agit encore d’une simple détermination objective – plutôt que subjectivo-pathologique – par l’idée, par une maxime de la raison. Mais l’essence de cette liberté n’est pas épuisée par cette détermination. Voyez aussi le dernier paragraphe du présent chapitre.)

ii
Tiré des Premiers principes métaphysiques de la nature

La science de la nature est au sens strict la science des corps (dans la spatio-temporalité).

La chimie est plutôt un « art systématique » qu’une science car ses principes purement empiriques ne sont susceptibles d’aucune représentation a priori dans l’intuition et ne se prêtent donc pas à une application des mathématiques. C’est aussi le cas pour la psychologie, où seule la loi de continuité pourrait être appliquée aux changements du sens interne, et le temps n’a qu’une dimension : cette mathématique serait donc très fruste.

La mathématisation actuelle de ces disciplines, chimie et psychologie, peut sembler démentir le point de vue de Kant, mais en ce qui concerne au moins la chimie, c’est dans la mesure où elle a pu devenir une science des corps dans la spatio-temporalité (les molécules) qu’elle se prête au traitement numérique.

*

Les lois de la nature sont ou bien pures (a priori) et apodictiques ou bien empiriques et contingentes.

Il existe des propriétés métaphysiques de la matière (pesanteur, élasticité) et des propriétés physiques (cohésion).

*

Les mathématiques comme les sciences empiriques ont une extension infinie car les unes et les autres reposent sur des intuitions, les premières sur des intuitions a priori, les secondes sur des intuitions sensibles.

La métaphysique de la nature peut quant à elle être « épuisée entièrement ». La métaphysique est en effet assurée de parvenir à la perfection et à un état stable car elle est la connaissance philosophique pure qui procède directement par concepts (selon l’architectonique de l’entendement) et non par construction de concepts (dans l’intuition).

*

La rotation est un mouvement relatif dans l’espace absolu. Comment la théorie de la relativité décrit-elle ce mouvement de rotation, alors qu’elle supprime l’espace absolu ?

*

Pour pouvoir parler de phénoménologie, il faut que les conclusions auxquelles on est parvenu ne puissent être atteintes par la voie empirique (dite « naïve ») car un tel résultat démentirait le postulat phénoménologique selon lequel la science empirique est forcément aveugle à certaines réalités phénoménologiques. Or on peut démontrer que tel est le cas : les stratégies conditionnelles de l’éthologie sont la même chose que la liberté selon Sartre (cf. mon essai The Science of Sex III, sous Sex Conditioning x).

iii
Qu’est-ce qu’une chose ? (Die Frage nach dem Ding)

« Kant s’est abstenu d’interroger et de déterminer dans son essence propre le révélé (Offenbare) qui vient à notre rencontre avant l’objectivation en objet d’expérience. » (151)

Or la loi de causalité étant ce qui fonde le jugement d’expérience, donc l’objet d’expérience, il n’y a rien pour notre pensée avant cette objectivation, dès lors que nous parlons de connaissance objective. Le « révélé », comme l’appelle Heidegger, n’a d’autre choix que de se soumettre à la loi de causalité.

« Dans la mesure où il lui est apparemment nécessaire [à Kant] de revenir à ce domaine, comme lorsqu’il s’agit de distinguer la perception pure et simple et l’expérience, le cours de la comparaison va toujours dans un seul sens : de l’expérience à la perception. » (151)

Ce distinguo de Heidegger est subtil, au sens péjoratif (de la Logique de Kant). C’est comme vouloir se passer de l’intuition dans le jugement : or la perception est dans l’expérience comme l’intuition est dans le jugement – une dissolution phénoménologique de l’agrégat est inopérante.

*

« Quand le fondement déterminant de la vérité réside dans le concept comme tel, alors le jugement est analytique ; quand le fondement réside dans l’objet même, alors le jugement est synthétique. » (174)

Oui, mais un jugement analytique se gagne aussi par la voie synthétique, par exemple « L’or est un métal jaune » est un jugement analytique qui découle de l’observation empirique.

Les jugements analytiques sont tous a priori, même quand leurs concepts sont empiriques, par exemple la proposition « L’or est un métal jaune » (Prolégomènes, p. 31). Ce concept a été acquis par l’observation (synthétique) ; une fois acquis de cette manière, il entre dans le domaine des propositions analytiques.

Or les jugements analytiques étant a priori, il en résulte qu’un jugement qui nécessite l’expérience pour sa genèse peut être a priori. « L’or est un métal jaune » est une proposition a priori mais non pure. Par ailleurs, la connaissance empirique est rendue possible par des jugements synthétiques a priori.

*

Heidegger compare Bohr et Heisenberg aux chercheurs des 16e et 17e siècles, qui étaient « aussi philosophes » (78), et les oppose au positivisme dans les sciences, exécré par lui : Bohr et Heisenberg « pensent de bout en bout en philosophes ». Or leur prétendu « questionnement » est réellement un dogmatisme à la manière de la vieille métaphysique évacuée de la connaissance empirique par la Critique de la raison pure. Dans le domaine empirique qui est celui des sciences, l’attitude pragmatique, au sens philosophique d’empirisme radical, est la seule valide : « La science n’a pas le choix », comme je l’ai souligné dans un chapitre précédent (x).

*

« La chose en tant que chose de la nature n’est déterminable qu’à partir de l’essence d’une nature en général. En conséquence et à plus forte raison, la chose au sens de ce qui nous rencontre d’abord – avant toute théorie et toute science – n’est déterminable qu’à partir d’un ensemble qui préexiste à toute nature et la dépasse. » (139)

La connaissance phénoménologique à laquelle fait allusion Heidegger ici, connaissance des choses qui nous entourent, et qui impliquerait des positions principielles différentes de la connaissance des choses comme choses de la nature (kantisme), se heurte au fait que c’est la loi a priori de causalité qui fait des choses qui nous entourent des choses de la nature. Nous ne pouvons, dans notre activité de pensée, faire abstraction de cette loi a priori ; il n’y a donc, dans notre expérience sensible, que des choses de la nature.

*

« L’intuition humaine est nécessairement sensible, c’est-à-dire telle que l’immédiatement représenté doit lui être donné. Parce que l’intuition humaine dépend d’une donation, c’est-à-dire est sensible, elle a besoin des organes des sens. » (153)

Heidegger répète le même raisonnement circulaire sur les sens et la sensibilité que dans son Kant et le problème de la métaphysique (1939), que j’ai souligné : nous avons des sens parce qu’il est dans notre nature (dans la nature d’une connaissance non omnisciente) d’avoir des sens.

*

« La Logique est fondée à neuf et transformée » (160) ne peut être le sens de Kant, dans la seconde édition de la Critique de la raison pure, car la Logique de 1801 est claire à ce sujet : la logique ne se fonde pas à neuf ni ne se transforme. Et pour cause, l’introduction de l’intuition par Kant ne se fait pas dans la logique à proprement parler mais dans la connaissance, qui englobe les deux. La logique reste et demeure un canon formel pour garantir la validité des jugements de l’expérience fondés dans l’intuition.

Les réserves de Heidegger sur le cours de logique de Kant (161) sont gratuites car, même élaboré par un disciple, Jäsche, à partir de ses notes, le cours manuscrit de Kant lui-même, ce cours a reçu l’imprimatur du philosophe.

L’interprétation de Heidegger se heurte en l’occurrence à l’essence même de la pensée kantienne. Même si, à un certain point de vue, on n’a jamais pensé de la même manière depuis Kant, à un autre point de vue, et c’est le seul essentiel ici, on a toujours pensé comme Kant, depuis que l’homme est homme (c’est-à-dire la pensée de l’homme est telle que Kant l’a dévoilée). (Tout ce qui introduit, au sens fondamental, une révolution sera emporté de manière fondamentale par une autre révolution : c’est la loi de la connaissance empirique.) Kant n’a pas introduit une nouvelle façon de penser, il a dévoilé le fonctionnement de la pensée humaine, qui est le même depuis toujours. Dès lors, toute la pensée antérieure se présente à nous dans cette compréhension neuve, mais c’est cette compréhension qui est neuve et non la chose elle-même : la pensée antique et médiévale, en ce qu’elle avait de rationnel, est la même chose que la pensée kantienne et post-kantienne en ce qu’elle a de rationnel.

*

Heidegger inverse sa position sur le rapport entre la première et la seconde édition de la Critique (161). En 1929, la seconde édition était un recul ; ici, elle correspond à la « propre position fondamentale » de Kant.

*

Une critique de la raison pure n’est en aucun cas « le rejet des prétentions de la métaphysique qui procède par purs concepts » (174) ! Car toute connaissance philosophique a priori procède par purs concepts (ce qui n’inclut pas l’intuition pure a priori, c’est-à-dire la mathématique pure, la connaissance pure a priori ayant deux branches, la métaphysique et la mathématique, cette dernière procédant par construction de concepts dans l’intuition pure).

La métaphysique rejetée par Kant est celle qui traite les idées de la raison comme des faits d’expérience (en particulier l’âme et, oui, Dieu) ; c’est une métaphysique grossière, qui fait d’une idée un objet (même si c’est un objet-sujet, comme autrui).

Dieu comme idée serait ainsi la plus haute conception possible de Dieu – non comme idée en tant que représentation ou imagination (fondée à un titre ou à un autre dans l’intuition) mais comme idée régulatrice de toute l’activité de connaissance (en tant, donc, que condition de l’expérience possible). (Je n’ignore pas la difficulté de cette conception par rapport au statut de Dieu comme créateur du monde, qui semble d’un autre côté la seule conforme à sa majesté.)

*

Faire de l’Angst, catégorie psychologique, une catégorie métaphysique (Sein und Zeit), c’est thématiser la subjectivité formelle selon la psychologie concrète. C’est un procédé repris de la théologie.

*

« L’homme est l’étant qui pose la question de l’être. » (Introduction à la métaphysique) On pourrait à la rigueur comprendre cette proposition comme « L’homme est l’étant qui pose la question de l’être parce qu’il est l’étant qui pose des questions » – mais le sens en est sûrement que telle est la vocation de cet étant. Or, puisque l’homme descend du singe (appelons cela le postulat matérialiste), il n’a reçu cette vocation qu’au cours d’une évolution biologique, et la question de l’être n’est pas alors une question métaphysique mais une question biologique. Le darwinisme n’est pas opposé seulement par les religions (ou certains secteurs des religions) mais aussi par tous ceux qui en ignorent sciemment les conséquences nécessaires, à savoir que 1/ les processus émergents du type sociologique ont dans l’évolution une racine biologique à laquelle ils se ramènent (d’où l’absolue cohérence des postulats sociobiologiques), et 2/ la métaphysique est secondaire et non première, dérivée et non fondamentale.

iv
Le Principe de raison (Der Satz vom Grund) : Nihil est sine ratione

Il y a un fond inconditionné. Pourquoi la science échapperait-elle à ce schéma et pourquoi cela la rabaisserait-il, si la pensée elle-même n’est pas rabaissée par cette même condition ? Pour Heidegger, l’être est l’inconditionné.

*

La logique de Hegel montre que la contradiction ne s’oppose pas à ce qu’une chose soit réelle (71). Or le principe de contradiction discrimine entre le vrai et le faux d’une proposition (« le principe commun de tous les jugements analytiques est le principe de contradiction » Prolégomènes, p. 31), non entre la réalité et l’irréalité d’une chose (« les jugements synthétiques ont besoin d’un principe autre que le principe de contradiction … (le) principe de raison suffisante, qui est manifestement synthétique » Ibid. 32, 35). Si ce qui est dit d’une chose est contradictoire, cette proposition est fausse, que la chose soit réelle ou non, et la contradiction interne d’une proposition concernant une chose n’entraîne pas l’irréalité de cette chose. C’est la condition formelle du jugement ; la condition concrète repose quant à elle sur un jugement synthétique, d’où découle la décidabilité du réel ou non (l’expérience possible).

Il n’y a pas de contradiction dans la nature car notre raison, régulatrice de la nature, s’y oppose : la contradiction ne fait pas partie de notre expérience possible (de la nature), c’est pourquoi notre activité intellectuelle consiste à chasser la contradiction de notre expérience quand elle l’y rencontre du fait de conceptions qu’elle ne peut manquer de qualifier d’erronées ou insuffisantes. (C’est la caractéristique de la pensée scientifique selon Heidegger : pp. 94-5). Et ce dont nous savons a priori qu’il ne peut être décidé sans contradiction échappe nécessairement à notre expérience : ce sont les antinomies de la raison, qui fixent les bornes de l’expérience possible, et qui tiennent aux limites intrinsèques de la raison quant au monde (qui est ainsi 1/ nature et 2/ chose en soi inconnaissable).

*

« La rose est sans pourquoi » (Angelus Silesius) (109). Le principe de raison est « valable au sujet de la rose, non pour la rose », et l’homme doit être comme la rose (108), soit : L’anthropologie est valable au sujet de l’homme, non pour l’homme. Heidegger reprend ici Kant : l’anthropologie au sujet de l’homme, l’anthroponomie pour l’homme.

*

La pensée toujours la même, avant ou après (Kant) (cf. iii), c’est ce que Heidegger appelle les « résonances » du principe de raison (dans la pensée occidentale) avant que Leibniz l’énonce.

*

L’étant objectifié est universellement régi par le Grundsatz vom Grund, mais l’être est Abgrund (abîme).

*

« Il est bien vrai que nous entendons une fugue de Bach avec les oreilles ; seulement, si la chose entendue n’était ici rien de plus que ce qui, comme onde sonore, vient frapper le tympan, nous ne pourrions jamais entendre une fugue de Bach. C’est nous qui entendons, et non l’oreille. Nous entendons sans doute au moyen des oreilles, mais non avec les oreilles, si « avec » veut dire ici que c’est l’oreille, en tant qu’organe sensible, qui nous fait atteindre la chose entendue. » (124)

Heidegger donne raison à Boulez contre ma boutade. Boulez : « Vos sifflets prouvent que vous n’avez rien compris » et moi : « Que peut-on bien demander à l’oreille de comprendre ? » (x) Mais cette conception, appelons-là heideggero-boulézienne, donne trop de l’art l’image d’un pur conditionnement, qui, s’il était vraiment pur, ôterait à l’art tout mérite propre. Un Papou peut-il apprécier une fugue de Bach ? Et sinon, qu’est-ce que le mérite de cette fugue ? (La question vulgaire serait : Et si oui, qu’est-ce que son mérite ?)

*

Ce que, dans Kant, j’ai appelé des oasis (pour le jeune esprit qui se plonge dans l’œuvre de Kant, l’expérience se caractérise par une longue marche au milieu du désert – une métaphore pour les longs développements difficiles et inassimilables – à laquelle il ne renonce cependant pas, en raison des oasis qu’il y trouve et qui lui procurent une joie incomparable ; ce n’est que plus tard qu’il se rend compte, non pas précisément qu’il marchait tout ce temps dans une forêt luxuriante, mais que la manne est partout dans le désert), je l’appelle ici des sucres. Est un sucre une pensée simple et sagace (sur l’étant) qui incite l’animal rationnel à poursuivre la lecture (de Heidegger sur l’être).

vii
Approche de Hölderlin (Erläuterungen zu Hölderlins Dichtung)

Stimme des Volkes : Un C.G. Jung est inutile puisqu’il y a Hölderlin. (Et Heidegger.)

*

The idea that dreams only give access to one’s neurotic or otherwise disturbed qua repressed unconscious has been a stifling one for culture.

One should be fond of one’s dreams – dreams in the oneiric sense, of course, not in the vulgar one of ambition.

*

La philosophie n’est pas logique (syllogistique), ni même intellectuelle. La poésie n’est pas sentimentale. Ni intellectuelle ni sentimentale est l’essence du religieux.

*

La poésie est un art hiératique et non sentimental. Les dieux de Heidegger sont les vrais dieux du paganisme.

*

Je viens de la pensée de Heidegger.

*

Toutes vos occupations font de vous des nihilistes.

*

La quête du succès est nihiliste ; les livres de bons conseils, une industrie nihiliste.

*

La pensée existe hors du temps. Elle ne s’inscrit pas dans le regressus causal mais le produit. Car le temps est contenu dans la pensée.

*

Pourquoi le postulatum d’Euclide est-il indémontrable ? Pourquoi recevons-nous de notre intuition des axiomes dont certains sont démontrables logiquement, d’autres non ?

*

L’idée hégélienne de « savoir absolu » se heurte à la synthèse continue de l’empirisme (à côté de la synthèse a priori de l’aperception). Le passage de l’être en puissance à l’actualité de l’être ne s’effectue pas dans le phénomène.

*

Comment peut-il y avoir une historicité chez Kant (un progrès de l’humanité vers la perfection de ses facultés) alors que le temps n’existe pas en dehors de la pensée ? C’est le phénomène homme qui progresse, non l’homme en soi.

*

En réponse à l’article Anthropologie (philosophie) de Pierre Osmo dans le Dictionnaire du monde germanique :

La liberté kantienne n’est pas la « maîtrise de soi » physiologique, elle ne relève tout simplement pas du domaine de la nature et n’en est donc pas non plus un dépassement. La liberté ne peut chercher à dépasser ce par quoi elle n’est pas contenue : or la nature ne la contient pas, la nature ne la connaît pas. L’anthropologie kantienne n’est nullement une « théorie des tensions » entre sensible et suprasensible, qui relève de l’anthropologie théologique. Nous n’en sommes plus là.

« Même la doctrine universelle du bonheur, pas même l’art de maîtriser les penchants et de soumettre les affects à son profit, [ne] doivent-ils être compris comme relevant de la philosophie pratique », c’est-à-dire de la philosophie morale, « car ces dernières disciplines ne contiennent toutes que des règles de l’habileté, donc seulement techniquement pratiques pour produire un effet qui est possible selon les concepts naturels des causes et des effets, et ces règles, puisqu’elles appartiennent à la philosophie théorique, sont subordonnées à ces prescriptions, comme de simples corollaires de cette philosophie théorique (de la science de la nature), et ainsi ne peuvent prétendre à occuper une place dans une philosophie particulière nommée pratique. En revanche, les prescriptions moralement pratiques, qui se fondent totalement sur le concept de liberté, en excluant entièrement tout fondement de détermination de la volonté procédant de la nature, constituent une espèce particulière de prescriptions qui, à l’instar des règles auxquelles la nature obéit, s’appellent tout bonnement des lois, mais ne reposent pas, comme les lois de la nature, sur des conditions sensibles, mais sur un principe suprasensible, exigeant pour elles seules, à côté de la partie théorique de la philosophie, une autre partie sous le nom de philosophie pratique. » (Critique de la faculté de juger)

Le kantisme devant la théorie de la relativité

L’histoire de la pensée scientifique abonde, à la périphérie des travaux de recherche, de phénomènes d’enthousiasme immodéré quant à leur portée épistémologique, phénomènes qui finissent par se dégonfler complètement au bout de quelques années ou décennies, quand le tsunami intellectuel décrit par certains s’avère être en définitive une brave vaguelette sur la plage de la philosophie, d’ailleurs utile en son champ et dans certains cas très significative s’agissant des conditions matérielles de l’existence humaine.

Le cas s’est présenté par exemple avec ce que l’on a désigné sous le nom de « physique nouvelle » à la fin du dix-neuvième siècle, autour de l’électromagnétisme, qui, selon certains, tels que les philosophes de l’école empiriocriticiste, devait nous conduire à réviser fondamentalement nos conceptions de la matière. Cette école aujourd’hui quelque peu tombée dans l’oubli a été durement étrillée par Lénine dans son ouvrage Matérialisme et empiriocriticisme (1909), dont j’ai déjà traité (Kant devant le matérialisme dialectique de Lénine) (x). Lénine écrit : « L’électricité devient un auxiliaire de l’idéalisme, puisqu’elle a détruit l’ancienne théorie de la structure de la matière, décomposé l’atome, découvert de nouvelles formes de mouvement matériel si différentes des anciennes, si inexplorées, inétudiées, inaccoutumées, si ‘merveilleuses’ qu’il devient possible d’introduire en fraude une interprétation de la nature considérée comme mouvement immatériel (spirituel, mental, psychique). Ce qui était hier la limite de notre connaissance des particules infiniment petites de la matière a disparu, – donc, conclut le philosophe idéaliste, la matière a disparu (mais la pensée demeure). »

Aujourd’hui, même si nous continuons de discuter les résultats de l’électromagnétisme, plus personne ne sait ce qu’est cette physique nouvelle, et l’on serait bien en peine de dire en quoi elle a bouleversé toutes nos conceptions les plus profondément enracinées comme l’ont prétendu ses thuriféraires en leur temps. Nous mesurons certes l’importance de la découverte des lois de l’électromagnétisme dans les progrès de la civilisation matérielle mais nous ne percevons pas en quoi les efforts intellectuels qui ont conduit à cette découverte et à son exploitation représentent un point de rupture épistémologique radical ; cette radicalité fait tout simplement défaut. Si l’on peut à just titre rendre hommage au tour de force ou à l’éclair de génie, comme on veut, qui s’est là manifesté (à savoir les équations de Maxwell), ce n’est pas le dénigrer que de relever que les conséquences de cette découverte n’ont pas la portée épistémologique générale qu’entendirent lui donner certains philosophes de l’époque.

D’ailleurs, quelques années plus tard, à peine sèche l’encre des empiriocriticistes et du livre de Lénine, le statut de pensée radicale, et même révolutionnaire par excellence passait de la physique dite nouvelle à une autre théorie, la théorie de la relativité, qui, selon les enthousiastes du jour, rendait caduques non seulement la physique classique mais aussi nos conceptions profondes de l’espace et du temps.

Devant la nouveauté de quelques équations mathématiques, il n’a donc évidemment pas manqué d’auteurs pour prétendre que celles-ci ruinaient complètement l’édifice de la philosophie kantienne, en particulier son épistémologie. Le présent essai vise à montrer qu’il n’en est rien, et que, pour reprendre le mot de Lénine, on a tenté de faire passer « en fraude », avec la théorie, des interprétations qui ne s’y trouvent pas et ne peuvent s’y trouver. Cet effort illégitime provient, comme dans le cas de la physique nouvelle, en partie des acteurs de la recherche eux-mêmes et en partie de penseurs extérieurs à ces travaux.

Le présent essai repose sur une discussion de l’ouvrage du philosophe Hans Reichenbach, Philosophie der Raum-Zeit-Lehre (1928), que, parce que c’était la seule édition facilement accessible, j’ai lu dans une traduction anglaise de 1958 par l’épouse de l’auteur, Maria Reichenbach, et John Freund : Philosophy of Space and Time. Hans Reichenbach est un philosophe du Cercle de Berlin, cercle qui se consacrait à la philosophie des sciences. Il est l’un des représentants de ce que l’on pourrait appeler la philosophie de la relativité, et son livre se veut une présentation et défense philosophiques de la théorie d’Einstein (relativité restreinte et relativité générale). Nous nous intéresserons particulièrement à la façon dont il aborde, pour en montrer le caractère dépassé, la philosophie kantienne.

Il convient de noter d’emblée que ce travail de réfutation du kantisme du point de vue de la relativité est l’objet plus spécial d’un livre antérieur de Reichenbach, Relativitätstheorie und Erkenntnis apriori (1920) (Théorie de la relativité et connaissance a priori), que je n’ai pas lu ; on verra toutefois dans les pages qui suivent que son livre de 1928 recoupe forcément les thématiques les plus importantes de ce précédent opus, et qu’il n’y a donc pas lieu de s’attendre à beaucoup d’inattendu entre l’un et l’autre. Dans plusieurs passages consacrés au kantisme dans son livre de 1928, Reichenbach explique d’ailleurs que son point de vue s’est affiné avec le temps ; nous nous confrontons donc avec celui de ses systèmes entre les deux le plus à jour.

(Je cite parfois le texte dans l’original anglais et parfois, pour des fragments très courts, dans une traduction française de ma main, selon que j’ai jeté sur papier des notes de lecture dans l’une ou l’autre langue.)

.

i

.

Dans ses remarques introductives à l’édition anglaise de l’ouvrage de Reichenbach, remarques en grande partie consacrées à Kant et à l’histoire de l’influence du kantisme, le philosophe Rudolf Carnap pose la distinction, importante chez Reichenbach, entre géométrie pure ou mathématique et géométrie physique. Cette distinction est selon moi problématique. Carnap explique qu’elle découle de la découverte des géométries non euclidiennes et de la nécessité qui en aurait résulté de déterminer, entre la géométrie euclidienne et une infinité de géométries non euclidiennes, laquelle s’applique à l’espace physique. Alors que Gauss, explique Carnap, répondait que cela devait dépendre de mesures physiques, les philosophes kantiens lui répondaient que la géométrie était indépendante de l’expérience. Poincaré prétendit que le physicien était libre de son choix, moyennant quelques ajustements des mesures, mais qu’il, le physicien, choisirait toujours la géométrie euclidienne pour sa simplicité. Enfin, Einstein posa dans sa relativité générale un espace non euclidien.

Pour Carnap et Reichenbach, il existe ainsi, d’un côté, une géométrie pure, c’est-à-dire logique, abstraite (« The statements of pure geometry hold logically, but they deal only with abstract structures and say nothing about physical space » [p. vi]), et, de l’autre côté, une géométrie physique décrivant la structure de l’espace physique. Il faut donc admettre, à côté de la pure géométrie a priori, une géométrie qui dépend de l’expérience.

Or il est inexact que la géométrie mathématique soit de nature purement logique, car elle est l’ensemble des propositions données a priori dans l’espace en tant que forme de notre intuition (Anschauung). La démonstration des axiomes est certes un travail logique mais les axiomes nous sont donnés a priori, c’est-à-dire, nous les connaissons a priori : nous les intuitionnons (anschauen). Chacun conçoit ces axiomes naturellement, aisément, sans le moindre effort (cf. le petit esclave du Ménon), tandis que leur démonstration logique (quand elle est possible) requiert un bagage et un effort intellectuels. Par conséquent, établir une distinction entre géométries à partir du fait que l’une serait abstraite et l’autre concrète n’a pas de sens, parce que la figure géométrique n’est pas un objet logique, un concept, une abstraction, mais un objet intuitif, une intuition ; ces intuitions existent de manière aussi bien abstraite (intuition pure) que concrète (intuition empirique), mais la ligne de démarcation à cet égard ne peut être qu’entre géométrie fondamentale et géométrie appliquée, c’est-à-dire selon une subordination de l’une à l’autre. L’idée de faire dépendre la géométrie de l’expérience est une aporie, car la forme de notre intuition ne dépend pas de l’expérience, qu’au contraire elle régule. La seule chose que l’on puisse dire, c’est donc que la forme de l’espace physique dépend de l’expérience.

Il ne peut y avoir qu’une seule géométrie intuitive car il n’y a qu’une forme de l’intuition humaine. Le choix entre géométrie euclidienne et géométries non euclidiennes n’est qu’apparent car les géométries non euclidiennes sont des productions ou bien dérivées ou bien purement logiques et se ramènent par conséquent à la géométrie euclidienne. La géométrie euclidienne est pensée dans un espace plan ; si l’on conçoit l’espace géométrique comme courbe, les axiomes sont modifiés en conséquence selon les mêmes lois de l’intuition qui régissent la géométrie euclidienne. C’est en effet encore intuitivement que l’on peut savoir que deux droites parallèles sur un espace plan se rejoignent en un point quand l’espace est courbé (c’est-à-dire en géométrie riemannienne, qui est la géométrie de la relativité générale). Nous y reviendrons (en ii).

Carnap nie que, dans la géométrie pure, les jugements, qui sont certes a priori, soient synthétiques ; il affirme que les jugements synthétiques n’existent que dans la géométrie physique, qui est empirique, et qu’ils ne sont donc pas a priori. Autrement dit, Carnap referme la Critique de la raison pure à la première page, en niant l’existence de cette catégorie à la fois paradoxale et fondamentale, le jugement synthétique a priori. Or, si le concept d’un triangle, par exemple, est sa pure et simple définition, et les énoncés qui exposent celle-ci sont analytiques, les énoncés qui exposent les propriétés du triangle sont synthétiques a priori. (Les citations de la Critique de la raison pure à l’appui de cette idée sont renvoyées à la fin du présent essai.) Le premier exemple que prend Kant est le suivant : on ne peut obtenir analytiquement, avec le concept de ligne droite et le nombre deux, le principe selon lequel deux droites ne peuvent former une figure fermée. Ce principe est donc synthétique. Il n’est pas non plus tiré de l’expérience : son caractère d’absolue généralité et nécessité indique qu’il appartient de manière a priori à notre intuition. Il en va de même avec les concepts de ligne, d’angle, et le nombre trois, et le triangle que ces concepts servent à définir : les jugements analytiques possibles à partir de ces concepts ne permettent pas de dégager les propriétés géométriques de la figure. Ces propriétés deviennent apparentes, c’est-à-dire évidentes non pas conceptuellement mais intuitivement, et leur nécessité atteste de leur caractère a priori. Ainsi de suite pour toutes les figures.

.

ii

.

Il y a deux façons d’interpréter les géométries non euclidiennes. La première, nous l’avons déjà dit, est qu’une géométrie non euclidienne se construit par un mouvement sur l’espace géométrique. Ces mouvements peuvent être de trois types : courbure de rotation, courbure segmentaire, torsion (Stamatia Mavridès, La relativité, 2000, p. 112). Dire, comme l’auteur qui vient d’être cité, que « si ces trois éléments sont nuls, la structure est euclidienne » (même page), c’est une autre façon de présenter le fait que l’espace de la géométrie euclidienne est plan tandis qu’un espace soumis à ces mouvements ne l’est plus ; les figures géométriques dans ces espaces sont affectés de modifications de la même manière et selon les mêmes modalités intuitives que les surfaces (surfaces courbes, sphériques, etc.) dans l’espace plan euclidien. Donc, dans cette interprétation, l’espace non euclidien est une surface euclidienne.

La géométrie riemannienne, par exemple, s’écarte de la géométrie euclidienne par différentes propriétés (parallèles qui se coupent, valeur différente de π, angles d’un triangle supérieurs à 180°…) résultant de son application à un espace sphérique sans considération de la troisième dimension, c’est-à-dire sans considération de l’écart entre la sphère et le plan (la courbure de la sphère). De sorte que, même si les axiomes considérés diffèrent de ceux de la géométrie euclidienne, l’intuition n’est en rien violée puisqu’il s’agit des conséquences logiques nécessaires d’opérations parfaitement appréhendables intuitivement. Il n’y a donc rien d’étonnant à ce que, moyennant quelque effort, on puisse visualiser un espace non euclidien, comme le rappelle Reichenbach.

La seconde interprétation consiste à dire qu’une géométrie non euclidienne est une construction logique. Dans la géométrie de Lobatchevski, on prend le postulatum d’Euclide (« par un point donné, il passe une et une seule parallèle à une droite donnée »), indémontrable, et on le modifie d’une façon quelconque (par exemple, « il passe une infinité de parallèles ») en vue d’en faire découler toutes les conséquences. Il s’agit donc de tirer les conséquences nécessaires d’un postulat arbitraire pour construire une nouvelle géométrie ; on se demande ensuite si cette géométrie ne décrit pas mieux l’espace physique que la géométrie euclidienne, car le postulatum euclidien n’est pas moins arbitraire car pas plus démontrable logiquement que son remplaçant. Or le postulatum est certes indémontrable mais il n’est pas arbitraire car il est conforme à notre intuition, et c’est de cette intuition, au même titre que de la logique, si ce n’est même avant cette dernière, que nous tirons notre concept de l’expérience possible.

De telles constructions logiques ont, de l’aveu même de Reichenbach, un rôle identique à celui des nombres imaginaires en science des nombres, ainsi décrit par Heisenberg : « La phrase : ‘√-1 existe’ ne signifie rien d’autre que : ‘Il existe des corrélations mathématiques importantes qui peuvent être représentées de la façon la plus simple par l’introduction du concept √-1.’ Bien entendu, les corrélations existent tout aussi bien si l’on n’introduit pas ce concept. C’est ce qui permet d’employer très utilement, du point de vue pratique, ce genre de mathématiques dans la science et la technique. Par exemple, en théorie des fonctions, il est très important de noter l’existence de certaines lois mathématiques qui se réfèrent à des couples de paramètres pouvant varier de façon continue. Ces corrélations deviennent plus faciles à comprendre en formant le concept abstrait √-1, bien que ce concept ne soit pas fondamentalement nécessaire à la compréhension, et bien qu’il ne soit pas relié aux nombres naturels. » (Werner Heisenberg, La partie et le tout, 1969) L’usage du nombre imaginaire √-1 n’enfreint l’intuition que parce que c’est un simple outil mathématique (logique), ne décrivant pas en tant que tel la moindre réalité empirique mais facilitant certaines opérations logiques, qui pourraient d’ailleurs se dérouler sans son usage. De même, selon Reichenbach : « Lobatschewky’s concepts become abbreviations for more complicated Euclidean relationships; we speak the language of Lobatschewsky but connect with these concepts the visual meaning of Euclidean relations. » (50) ; ce qui renvoie au fait plus général que les géométries non euclidiennes « can be mapped upon Euclidean space » (49).

Il résulte de ce qui précède que l’utilisation en physique de géométries non euclidiennes ne remet pas en cause le caractère a priori de la géométrie euclidienne. Reichenbach cherche à faire de cette dernière un « cas particulier », et l’on a vu que ce serait alors le cas d’une géométrie où les éléments de courbure et de torsion seraient nuls. Or ces éléments sont eux-mêmes des mouvements géométriques de l’intuition, et donc du cas particulier serait issu, d’une part, lui-même (la géométrie euclidienne) et, d’autre part, les autres cas particuliers (les géométries non euclidiennes), ce qui est absurde. En réalité, ce sont les géométries non euclidiennes qui sont des cas particuliers, dérivés selon les modalités que nous avons décrites, de la géométrie euclidienne, à laquelle elles peuvent se ramener. Que l’espace physique soit plan ou courbe, nous lui appliquons, pour le connaître, un traitement déterminé a priori dans les formes de notre intuition.

Je partage donc assez la position de Poincaré rappelée en introduction : libre choix dans la recherche, moyennant les ajustements nécessaires, tout en sachant que la géométrie euclidienne conserve son statut premier par rapport aux autres. Si une autre géométrie paraît devoir s’imposer au chercheur, pour des raisons de commodité ou autres, eh bien voyons ce que ça donne ! Mais il faut être sûr que l’on parle du vide, sinon la courbure impliquée dans l’usage de la géométrie non euclidienne n’est pas celle de l’espace mais plutôt celle d’une substance. Or la notion de vide est, du point de vue philosophique, hautement problématique en physique : on le trouve partout (« vitesse de la lumière dans le vide », etc.) mais il n’est nulle part, en tant que catégorie pure (il existe un gaz galactique, etc.). En balistique aussi un projectile est légèrement dévié par la proximité d’un corps massif : cela ne nous autorise-t-il pas à parler d’une géodésique riemannienne dans le cas d’une balle de pistolet, comme dans la relativité générale ?

.

iii

.

Dès lors que l’on admet le concept de géométrie physique, alors même que la géométrie est par nature a priori tandis que la physique est par nature empirique, il est évident que rien n’empêche d’introduire les champs de force dans cette géométrie, puisqu’elle est devenue une branche des sciences empiriques plutôt que leur fondement a priori.

Les objets des sens sont soumis à des champs de force comme à leur élément physique, matériel (au sens large, qui inclut l’énergie). Mais ces mêmes objets sont soumis à la géométrie comme à leur élément formel a priori (pour nous, non pas en soi au sens de la chose en soi, du noumène) et non comme à un élément physique ou matériel. L’élément physique ne peut agir sur l’élément a priori dans notre expérience.

Le champ de force n’appartient pas à la géométrie. La géométrie physique, c’est là le putsch de la relativité. (On a dit plus haut ce qu’il convenait d’en penser.)

.

iv

.

Les observations astronomiques confirment la théorie de l’espace non euclidien de la relativité générale, tout comme les observations des éclipses ont confirmé le ptolémaïsme pendant 1.500 ans.

Dans la mesure où une théorie, le ptolémaïsme, a dû être abandonnée après 1.500 ans de bons et loyaux services pour la prédiction des éclipses, une théorie ne doit pas tant être jugée d’après des résultats que d’après ses éléments intrinsèques. Ces éléments intrinsèques, ce n’est pas seulement sa cohérence interne, mais aussi ce qu’elle demande qu’on « lui passe ». Par exemple, qu’on lui passe que la vitesse de la lumière est constante, non parce qu’on pourrait le savoir – car on ne peut pas le savoir, « la mesure de la vitesse a un élément d’arbitraire dans la définition de la simultanéité » – mais parce qu’une telle définition ne conduit à aucune contradiction (205).

.

v

.

« If several kinds of geometries were regarded as mathematically equivalent, the question arose which of these geometries was applicable to physical reality; there is no necessity to single out Euclidean geometry for this purpose. Mathematics shows a variety of possible forms of relations among which physics selects the real ones by means of observations and experiments. » (6)

Cette citation est l’exposé par Reichenbach des problématiques présentées par Carnap dans ses propos introductifs et dont nous avons rendu compte.

Si l’observation et l’expérimentation doivent déterminer le type de géométrie applicable à l’espace physique, il faut que n’entre aucune forme de géométrie dans cette observation elle-même, car la détermination de la géométrie applicable dépendrait alors du choix de la géométrie employée, et telle géométrie conduirait à telle géométrie, telle autre à telle autre, et quelle valeur aurait le résultat ? Or il n’est pas possible de se passer de géométrie dans l’observation des phénomènes physiques ; il semble alors que la science physique détermine elle-même ses résultats, par le choix de ses instruments.

En outre, cette méthode fait implicitement reposer la vérité sur le seul aspect des résultats, des prévisions permises, mais, comme on l’a vu en iv, avec une telle méthode le ptolémaïsme aurait toujours cours.

R. écrit en outre, « Since mathematics furnishes a proof that the construction of non-Euclidean geometries does not lead to contradictions, no logical self-evidence can be claimed for Euclidean geometry» (32).

Il a raison de souligner le mot logique dans l’expression évidence logique, car la géométrie euclidienne ne réclame pas une évidence logique (elle se passe de démonstration pour le postulatum indémontrable) mais une évidence intuitive. Pour le reste, si l’on peut se passer entièrement de l’évidence intuitive, comme le croit R., pourquoi ne le pourrait pas non plus de l’évidence logique ? L’évidence logique est le point fixe de sa philosophie, à l’aune duquel tout est jugé, mais R. ne justifie jamais ce parti-pris. Or notre concept de l’expérience possible ne repose pas seulement sur le raisonnement logique : démontrer logiquement quelque chose ne dit rien de certain sur sa réalité dans notre expérience.

Si « the occurrence of visualization does not imply anything about the space of real objects » (34), ce qui se prétend une défense du logicisme par le matérialisme, notre horizon visuel n’étant pas a priori mais une modalité parmi d’autres possibles et imaginables de l’espace physique préexistant à cette faculté, rien ne nous empêche de tenir le même raisonnement à propos de notre faculté d’entendement : nous pouvons, soit en prenant le contre-pied systématique de toutes les catégories de l’entendement, soit en imaginant diverses autres alternatives, concevoir de nouvelles formes de logique, dont la logique de Reichenbach serait un cas particulier. Pourquoi passe-t-il sous silence cette possibilité dans le cas de l’entendement (de la logique) alors qu’il en fait un si grand usage dans le cas de l’intuition ?

.

vi

.

Reichenbach compare la « relativité de la géométrie » à la relativité d’une échelle de mesure, indiquant que ce sont des notions équivalentes. Dès lors que la géométrie passe pour empirique, on ne peut certes plus dire qu’une échelle de mesure nous est donnée par les objets tandis que la géométrie nous est donnée a priori.

R. conclut que le résultat n’est cependant pas arbitraire. Mais si le résultat donné par telle échelle n’est pas arbitraire, c’est que toutes les échelles peuvent être converties les unes dans les autres (yards en mètres, etc.). Dès lors, si le résultat du choix discrétionnaire d’une géométrie n’est pas arbitraire, c’est que toutes les géométries peuvent se convertir elles aussi les unes dans les autres, et c’est d’ailleurs bien ce qu’affirme Reichenbach (cf. les citations des pp. 49 & 50 au ii), et, par suite, de même qu’une seule échelle pourrait suffire (que l’on pourrait se passer complètement des yards), de même une seule géométrie peut suffire : l’espace euclidien qui correspond à notre intuition. (Si ce n’est que, comme les nombres imaginaires, les géométries non euclidiennes peuvent jouer un rôle instrumental.) C’est une autre façon de parvenir à la conclusion de ii.

.

vii

.

Reichenbach appelle subjective une convention (37). Il confond arbitraire et subjectif (« le rôle que joue la subjectivité dans nos méthodes de recherche », méthodes qui reposent sur des définitions de coordination [coordinative definitions] arbitrairement choisies). Or le subjectif n’est pas arbitraire car, avec l’intuition, il y a dans le subjectif une nécessité qui fait défaut à l’arbitraire.

.

viii

.

Reichenbach explique que l’espace euclidien est infini (46), n’en déplaise à Kant et ses antinomies, ce qui est démontré par telle preuve géométrique qui infère nécessairement cet infini, et que l’espace euclidien n’est donc pas, contrairement à ce qu’affirme Kant, « visualisable »/intuitionnable (« visualisation », c’est ainsi que traduisent les traducteurs du livre le terme allemand Anschauung, que les traductions de Kant rendent, autrement, par « intuition »).

a/ S’agissant de l’antinomie kantienne de l’espace

Celle-ci porte sur l’espace physique. Certes, le « concept d’infini est très facile à manipuler dans les constructions conceptuelles » – Kant n’a jamais dit le contraire – « malgré le fait que l’infini ne soit pas visualisable » (R., même page) : c’est bien pourquoi l’infini de l’espace n’est pas une connaissance a priori (et ne peut même pas être une connaissance du tout dès lors que nous parlons de l’expérience possible).

b/ S’agissant de l’argument du caractère non visualisable ou intuitif de l’espace euclidien infini

Cet infini intervient là dans le travail de la preuve, c’est-à-dire dans la partie logique de la géométrie, et non dans sa partie intuitive. De même que les antinomies de la raison sont des contradictions internes aux propositions logiques relatives à l’espace et au temps qui n’affectent pas la nature de l’espace et du temps comme formes de notre intuition, de même l’intervention de l’infini dans le travail de démonstration logique de la géométrie n’a pas non plus le moindre effet à cet égard, et ne peut servir d’argument comme le croit R.

.

ix

.

Dans la même veine que vii de contestation de l’intuition en géométrie, Reichenbach affirme que « nous ne pouvons visualiser un angle droit » (46), car nous ne pouvons le distinguer intuitivement d’un angle de 89° 59’.

Il faudrait commencer par dire qu’un angle de 89° 59’ n’existe qu’en logique avant de dire que la différence entre les deux angles ne peut appartenir à notre intuition. L’angle droit appartient à notre sens de la symétrie, qu’il conforme (l’angle droit délimite des espaces égaux, les deux moitiés de 180°). C’est par la numération logique que l’on peut commencer à considérer les déviations infinitésimales par rapport au symétrique.

La symétrie est une donnée intuitive avant d’être numérique. Certes, on ne peut intuitionner un écart infiniment petit par rapport à la symétrie, mais cela ne signifie pas que la logique prédomine dans l’intuition, comme l’affirme R., seulement qu’un écart infiniment petit est une notion logique.

R. explique également que nous ne voyons pas la différence entre un polygone à mille côtés et un autre à mille quatre côtés. Je veux bien lui concéder que la logique prédomine dès lors que nous parlons de telles figures géométriques, mais c’est parce que, dans ces figures, le numérique prend le pas sur l’intuition des axiomes, et qu’il faut dès lors appliquer ces derniers de manière automatique au cas de figure.

Si la logique prédomine en géométrie, ce n’est pas dans le sens où R. l’entend, celui d’une prédominance épistémologique : c’est seulement dire que l’ensemble des propositions intuitives a priori, tout aussi fondamental épistémologiquement, est en quelque sorte quantitativement, ou en volume, plus restreint que l’appareil logique par lequel l’entendement exploite cet ensemble.

.

x

.

Les axiomes de la géométrie peuvent (ce n’est pas le cas de tous) être prouvés logiquement mais ils sont (tous) vrais a priori dans l’intuition. La démonstration logique n’est donc pas première ; permet de le comprendre le fait que l’on puisse aussi prouver des axiomes non euclidiens. La « fonction normative » (39) dans la géométrie, à côté de la fonction « imagière » (image-making), n’est pas une fonction logique.

La construction des objets de la géométrie est un jugement et non une simple visualisation. C’est pourquoi la traduction hors norme d’Anschauung par visualisation dans Philosophy of Space and Time est fautive – même si je lui reconnais un intérêt pédagogique, pour les lecteurs peu familiers de Kant. Par ailleurs, c’est dans un sens restreint que R. semble lui-même saisir l’Anschauung selon Kant, puisqu’il reproche à Hilbert (101) d’affirmer que sa théorie des définitions implicites, selon laquelle la géométrie peut se passer de l’intuition, ne contredit pas l’épistémologie kantienne, ce que R. ne peut comprendre. Or, que l’intuition puisse être omise dans la construction de l’objet géométrique n’a rien de choquant dans le cadre kantien. Cette problématique existe depuis l’invention de la géométrie analytique par Descartes, époque depuis laquelle on parle de géométrie analytique et de géométrie synthétique. La théorie de Hilbert ne peut être à cet égard un plus grand obstacle à l’affirmation des thèses kantiennes que la géométrie analytique cartésienne. La géométrie analytique comporte en puissance les vues de R. sur le primat du logique sur l’intuitif, et il est d’autant plus remarquable que Kant ait fondé sa philosophie transcendantale sur le jugement synthétique de la géométrie pure alors que dominait déjà la géométrie analytique, où le traitement arithmétique des fonctions remplace l’intuition des formes. C’est qu’aucun raffinement technique de nos moyens de connaissance ne peut venir contredire la théorie de la connaissance a priori.

.

xi

.

« What remains as undefinable basic concepts are such purely logical concepts as element, relation, one-to-one correspondence, implication, and, etc. All geometrical concepts, the elements as well as the relations, can be given as functions of these basic concepts. » (93-4)

Ces concepts de base indéfinis ou indéfinissables sont la preuve que la logique ne nous fournit pas le tout de la connaissance.

Le postulatum d’Euclide est indémontrable dans l’intuition. Dans l’entendement, le principe de non-contradiction est indémontrable (Métaphysique d’Aristote). Or, puisque l’on a construit des géométries non euclidiennes sur des propositions alternatives au postulatum, qu’est-ce qui nous empêche de construire une infinité de sciences nouvelles sur des alternatives au principe de non-contradiction ? Rien, mais ces sciences, même si elles étaient fructueuses et si ses résultats étaient corroborés par des observations empiriques, n’auraient qu’une portée épistémologique limitée.

Le théorème d’incomplétude de Gödel (1931) montre que quelque chose doit suppléer au raisonnement logique, ou du moins le compléter, pour que nous possédions un critère de la vérité. Ce quelque chose est donné a priori dans l’intuition. Le théorème de Gödel est d’une certaine manière une reformulation des antinomies kantiennes.

Considérer, comme R., qu’un système nécessairement incomplet – le système logique – s’impose à l’intuition, c’est priver la connaissance de tout critère de la vérité. On ne peut mettre entre parenthèses l’intuition sans mettre entre parenthèses en même temps le critère du vrai. Ce que montre le théorème d’incomplétude, c’est que le fondement de la connaissance n’est pas seulement logique. L’intuition n’est pas simplement une « aide » (97), elle fournit un critère essentiel : celui de la vérité.

Le contenu authentique des propositions géométriques ne peut pas être dans les concepts logiques (100) car le système de ces concepts est par nature incomplet (Gödel), antinomique (Kant), et nous n’aurions par conséquent aucune certitude apodictique. L’usage des catégories de l’entendement en dehors de l’intuition fait reposer la connaissance sur une moitié des conditions de la connaissance ; or les deux sont ensemble nécessaires pour que nous puissions affirmer qu’un résultat est conforme à notre critère du vrai.

Je note en passant que l’argument tiré de la nature de simple « aide » de l’intuition, destinée à lui conférer un statut subalterne par rapport à la logique ou l’entendement, contredit celui avancé par R. lui-même pour élever les géométries non euclidiennes, à savoir le fait qu’elles sont elles aussi visualisables (moyennant un certain effort). Si la géométrie euclidienne n’a pas vraiment besoin de visualisation, les géométries non euclidiennes non plus, et leur visualisation possible ne peut servir d’argument en leur faveur puisqu’elle est alors indifférente à la question.

.

xii

.

Quand il est question d’espace et de temps, chez R., on est sur des considérations techniques de leur mesure. Or les éléments qui peuvent se dégager de telles considérations ne sont pas adéquats pour contester la nature a priori de l’espace et du temps. Que cette mesure implique des définitions arbitraires, dans un travail (de définition), résulte bien du fait que ce travail même doit être appliqué à une forme a priori qui lui préexiste.

Ce travail de définition (d’une unité arbitraire des règles rigides et des montres) n’est pas a priori mais un choix empirique arbitraire, et ne peut donc servir à réfuter une connaissance a priori. C’est l’échelle qui est arbitraire, non la forme de l’intuition qu’elle sert à normer. Personne n’affirme que le mètre ou la seconde a une réalité a priori, mais reconnaître l’arbitraire de ces unités de mesure ne permet pas d’en déduire l’arbitraire de ce qu’elles servent à mesurer.

.

xiii

.

« It is not the theory of gravitation that becomes geometry, but it is geometry that becomes an expression of the gravitational field. The theory of relativity did not convert a part of physics into geometry: the geometry of the universe is not only a fact that can be ascertained empirically, but also a fact to be explained by the effects of forces. In addition to the problem of the measurement of physical space, known since Gauss, Riemann and Helmholtz, Einstein introduced the problem of a scientific explanation of physical geometry, which finds its mathematical solution in the gravitational field equations. » (256-7)

Ainsi, la géométrie physique qui, selon Carnap, sert à décrire la structure de l’espace physique, reçoit dans la théorie de la relativité une « explication scientifique » par les champs gravitationnels. On explique donc les champs gravitationnels par les champs gravitationnels… Dès lors que l’on nie le caractère a priori des propositions de la géométrie, on se heurte forcément à ce genre d’aporie épistémologique, car on définit l’instrument par ce qu’il est censé définir (voyez v). Si la géométrie est un objet empirique comme les objets de la physique, la physique ne possède aucune pierre de touche a priori sur laquelle fonder ses résultats.

S’il faut une explication physique de la géométrie physique (la restriction à la géométrie physique implique déjà une tautologie), ne faut-il pas non plus à la logique elle-même une explication par exemple biologique (car la logique est propre à l’homme-animal), ou sociologique, ou ethnologique, voire physique ? Dans la théorie de la relativité, tout devient relatif et la logique seule reste a priori. C’est un panlogicisme qui s’ignore.

« Its [the general theory of relativity’s] greatest success consisted in its explanation of geometry, in which it revealed the behavior of measuring instruments as an effect of gravitational field. » (265)

Mais, encore une fois, la géométrie n’est pas fondamentalement une métrologie, en dépit de son étymologie, qui renvoie à la « mesure des terrains » et me fait donc dire que le terme de géométrie est en réalité impropre ; il s’agit avant tout d’une morphoscopie, c’est-à-dire de l’intuition pure des formes dans l’espace.

.

xiv
La relativité de la simultanéité

.

a/ Son explication par la théorie de la relativité restreinte

Si je me déplace vers une source lumineuse, sa lumière me parvient plus tôt qu’à celui qui reste immobile derrière moi au point d’où je suis parti. Si deux événements lumineux sont simultanés pour ce dernier, ils ne le sont donc pas pour moi. Il ne pourrait y avoir de simultanéité absolue que si la lumière avait une vitesse infinie ; il n’y a pas de simultanéité absolue car il n’y a pas de vitesse infinie.

De même, le mètre (instrument de mesure) d’un observateur n’est pas le même que celui d’un autre en mouvement ailleurs. Pour A, son mètre est plus grand que celui qu’il perçoit de B en mouvement, et réciproquement, alors que les deux coïncidaient quand A et B étaient tous deux immobiles au même endroit. Cela tient au décalage des signaux lumineux entre l’une et l’autre extrémité de chacun des mètres.

On tient le même raisonnement pour deux montres mobiles (tic-tac par signaux lumineux).

Il en est déduit que les notions (newtoniennes) d’espace et de temps absolus sont abandonnées.

b/ Interprétation

La relativité, c’est qu’il faut tenir compte de la vitesse de la lumière dans nos mesures (d’espace et de temps). L’espace et le temps absolus sont donc en fait maintenus, épistémologiquement, car la lumière sert à la mesure d’un événement selon l’œil et seulement l’œil ; et ce qui est simultané en soi n’a pas à l’être aussi pour l’œil pour pouvoir être dit exister.

Puisque l’effet de contraction décrit par la théorie sur les instruments de mesure est dû à la vitesse de la lumière, il s’agit d’une correction à effectuer dans les données perceptibles, en fonction des distances et de la vitesse de la lumière. Aucune notion épistémologique fondamentale n’est relativisée fondamentalement. L’espace et le temps absolus newtoniens n’existent plus (et encore, seulement pour les vitesses qui ne sont pas dites « faibles par rapport à la vitesse de la lumière »), mais ces notions n’avaient pas la portée épistémologique générale qu’on leur prête, seulement une portée restreinte à telle science métrologique, la physique.

Dès lors, il faut dire, non pas qu’il n’y a pas de simultanéité absolue, mais qu’il n’y a pas de simultanéité absolue en physique, et même plus précisément en méthodologie des sciences physiques, où l’on mesure l’espace et le temps à l’aune des déplacements de la lumière (et donc, encore, à la réserve que cette impossibilité ne concerne cette méthodologie qu’en tant que celle-ci s’appuie sur les signaux lumineux pour établir des mesures, ce qui n’a rien de nécessaire en soi). Mais le concept reste valide a priori (ou comme conséquence directe d’un principe a priori).

Que les points de vue subjectifs soient tous relatifs les uns par rapport aux autres, c’est ce qu’on savait depuis longtemps (sauf en physique). Que cela doive conduire à renoncer à la simultanéité absolue, c’est faux. Car cette relativité est contingente à l’observation des objets à la lumière visible.

Stamatia Mavridès (dans l’ouvrage cité en ii) explique : « Pour Fitzgerald et Lorentz la contraction était ‘une véritable modification physique due au mouvement par rapport à l’éther’. Au contraire, pour Einstein, il s’agit d’un effet apparent (mais non illusoire) purement observationnel et réciproque, provoqué par le mouvement relatif. » (43-4) Un effet observationnel, quand bien même on tient à souligner qu’il n’est pas illusoire, précision qui, sans plus ample explication, apporte de la confusion plutôt qu’autre chose, implique la subjectivité, qui ne permet pas de parler de – si j’ose dire – relativité objective, donc de réfuter une simultanéité absolue. Ainsi, « la notion de longueur est absolue » non seulement pour la transformation de Galilée (44) mais aussi selon la transformation de Lorentz puisque la relativité des longueurs est observationnelle. On confond corrections métrologiques nécessaires et relativité.

Bien que S. Mavridès ne le dise pas formellement, je suppose (en raison du recours à la transformation de Lorentz dans les deux cas et de la réciprocité présente dans les deux cas) que l’effet est encore observationnel dans le ralentissement des horloges mobiles. Dès lors, je ne comprends pas comment on en vient à tenir pour vrai le « paradoxe des horloges » ou, chez Langevin, « paradoxe des jumeaux ». Dans le paradoxe des jumeaux selon Langevin, c’est parce que le jumeau qui voyage dans l’espace fait un aller-retour (avec accélération en sens contraire de son point le plus distant vers son point d’origine) que le principe de réciprocité n’est pas violé et que le jumeau qui a voyagé est plus jeune. Mais dans la version d’Einstein (le paradoxe des horloges), l’horloge mobile revient à son point de départ après avoir suivi une courbe fermée avec une vitesse constante, et retarde tout de même par rapport à celle qui est restée immobile : qu’est-ce qui empêche dans ce cas le principe de réciprocité d’être violé ? Où est l’accélération ? Et comme, de toute façon, il s’agit d’effets observationnels, les deux observateurs hypothétiques associés à chaque montre devraient voir l’effet croître à mesure que les horloges s’éloignent puis décroître à mesure qu’elles se rapprochent, jusqu’à disparaître complètement au moment où elles se rejoignent. Mavridès parle certes d’« effet observationnel (mais non illusoire) » [je souligne] mais elle oppose bien cet effet à la conception de Fitzgerald et Lorentz d’une « véritable modification physique ». Or les paradoxes en question montrent, ou c’est à n’y rien comprendre, une véritable modification physique.

.

xv
Dimensions de l’espace et du temps

.

Mavridès cite comme parole d’évangile la malheureuse phrase de Minkowski de 1908 qui passe encore pour le fin mot de la théorie de la relativité, faisant de celle-ci, comme la physique qui était encore dite « nouvelle » il y a peu (cf. l’introduction à cet essai), une arme de destruction massive du sens commun ayant prévalu dans l’humanité depuis ses commencements. Je rappelle cette phrase :

« Désormais l’espace en lui-même et le temps en lui-même sont condamnés à s’évanouir comme de pures ombres, et seule une sorte d’union des deux conservera une réalité indépendante. »

Or Reichenbach explique que cette phrase est une bêtise, et qu’elle n’est d’ailleurs pas non plus pour rien dans le déchaînement de critiques à l’encontre de la théorie, quand elle, cette phrase, a été prise au pied de la lettre. En réalité, les conceptions intuitives de l’espace et du temps ne sont en rien changées par le fait de déterminer les événements du monde physique par quatre coordonnées (x, y, z, t), trois d’espace et une de temps. Ce n’est même pas une originalité de la théorie !

Le propre point de vue d’Einstein est le suivant : « Selon la théorie de la relativité restreinte, le continuum à quatre dimensions formé par l’union de l’espace et du temps retient le caractère absolu qui, selon la théorie précédente, appartenait à la fois à l’espace et au temps séparément. » (Mavridès, op. cité, 50-1) La montagne accouche d’une souris, car l’espace garde ses trois dimensions et le temps garde sa dimension unique et sa directionnalité. Là encore, aucune notion épistémologique fondamentale n’est relativisée fondamentalement.

Je me contenterai de citer divers passages de Reichenbach à ce sujet (citations qui figurent déjà, en commentaires – compléments – d’un précédent billet touchant à ces questions [x]).

« Through the combination of space and time into a four-dimensional manifold we merely express the fact that it takes four numbers to determine a world event, namely three numbers for the spatial location and one for time. Such an ordering of elements, each of which is given by four conditions (coordinates) can always be conceived mathematically as a four-dimensional manifold. »

« The relativistic theory of gravitation does not destroy the intuitive character of time. »

« It is the characteristic of three-dimensionality that it and only it leads to continuous causal laws for physical reality. » Selon Reichenbach, les dimensions surnuméraires impliquent une violation du principe d’action par contact, à travers soit une vitesse infinie de propagation causale soit l’harmonie préétablie, deux singularités.

« There are instances in physics where we work with spaces of a higher dimensionality, namely, whenever we use a so-called parameter space. … we consider the parameter space merely a mathematical tool with no objective reference, whereas we regard the three-dimensional space as the real space. » Considérer que l’espace des paramètres serait une contradiction objective de l’intuition se heurte ainsi à la même réponse exactement que celle apportée par la citation de Heisenberg s’agissant des nombres imaginaires.

« The statement that physical space has three dimensions has therefore the same objective character as, for instance, the statement that there are three physical states of matter, the solid, liquid, and gaseous state; it describes a fundamental fact of the objective world. »

On notera au passage que Reichenbach indique que l’on ne peut intuitionner des espaces à plus de trois dimensions (281). Ce n’était pas une remarque spécialement pertinente après ses longs développements en vue de minimiser la portée de l’intuition dans la géométrie et sa critique de l’intuitionnisme kantien.

.

xvi
Singularités

.

De la théorie de la relativité sont plus ou moins directement issus deux « objets » majeurs de l’astrophysique contemporaine, le trou noir et le Big Bang, chacun caractérisé par une singularité, à savoir, dans le cas du trou noir, une densité infinie en son centre, et, dans le cas du Big Bang, une température infinie à l’origine. Il semble impossible de convaincre ceux qui ont adopté ces objets, apparemment une fois pour toutes, que ces singularités rendent l’existence objective desdits objets en l’état très précaires. Le moment est donc venu de leur rappeler que la théorie de la relativité d’où ces objets sont issus se légitime elle-même par le fait d’avoir surmonté des singularités d’ordres divers. Ce genre de singularités enfreint notre concept de l’expérience possible. Avec les singularités, nous avons la démonstration de l’existence de possibilités logiques qui sont des impossibilités empiriques (et ceci répond au panlogicisme de Reichenbach).

Tout d’abord, la relativité se passe de l’hypothèse de l’éther. Il conviendra de revenir sur ce sujet dans un autre essai, car l’éther est, dans l’Opus postumum de Kant, une catégorie nécessaire : voyez ici (Notes sur la philosophie transcendantale dans l’Opus postumum de Kant). Or l’éther devait posséder selon Fresnel une rigidité infinie tout en n’opposant aucune résistance au mouvement des planètes (Mavridès, 17).

Ensuite, avec l’hypothèse de la vitesse constante de la lumière, la théorie de la relativité surmonte une singularité de la théorie de la gravitation de Newton, selon laquelle la gravitation se propage avec une vitesse infinie (ibid., 104).

Il convient de noter à cet égard que, dans la théorie de la relativité, la vitesse c de la lumière se comporte comme une vitesse limite car, au-delà de cette valeur, le radical √1-v2/c2 de la transformation de Lorentz devient imaginaire (ibid., 39-40). Le nombre imaginaire, non intuitif, sert donc ici de barrière, de singularité circonscrivant l’expérience possible.

De même, on a vu que c’est parce qu’une vitesse infinie est impossible que l’on ne peut parler, selon Einstein, de simultanéité absolue (en physique). La vitesse de propagation causale (dans une même chaîne causale) doit également être considérée comme limitée.

Enfin, c’est pour éviter une singularité, « a causal anomaly » (65) selon Reichenbach, que le recours aux géométries non euclidiennes s’imposerait en relativité générale. Le raisonnement de R. sur ce point, dans le passage en question, semble tautologique : R. veut nous expliquer ce qui se passerait dans un univers qui aurait la forme d’un tore, ce faisant nous indique que ce qui s’y passe implique de renoncer à la loi de causalité si ce n’est pas un tore, et que par conséquent il est préférable, pour conserver la loi de causalité et éviter ainsi de recourir à une « harmonie préétablie », que ce soit un tore… Tout en saluant la démarche très kantienne visant à conserver la loi de causalité, catégorie a priori de notre entendement, je ne peux manquer de relever que l’argument dont R. se sert dans son tore ressemble fortement à celui qu’il écarte en réfutant la possibilité d’une chaîne causale fermée : « although they [les événements] are of the same kind, they are not identical events » [140]. Tout en opposant ce raisonnement, que je ne développe pas, aux boucles causales fermées, R. insiste sur le fait que « mathématiquement parlant », il est possible de concevoir « sans singularités » un monde où de telles boucles existent, tant que l’observation n’a pas démontré le contraire. Ce qui montre une fois de plus qu’une singularité ne peut être à la fois constatée (logiquement) et maintenue (car la logique a violé les conditions de l’expérience possible), ce qui devrait donc conduire ceux qui, convaincus, à l’instar de Reichenbach et du Cercle de Berlin, de la portée épistémologique majeure de la théorie de la relativité, à renoncer à revendiquer comme un postulat irréfragable les singularités du trou noir et du Big Bang.

.

Conclusion

.

Quelle que soit l’utilité de la théorie de la relativité en science physique, je n’ai pas trouvé fondée la prétention d’en faire une nouvelle théorie de la connaissance, une sorte de nouveau code épistémologique du genre humain, qui notamment rendrait caduque la philosophie transcendantale (kantienne).

.

*

Citations de la Critique de la raison pure (au i)

.

Die letztern, nämlich empirische Begriffe, imgleichen das, worauf sie sich gründen, die empirische Anschauung, können keinen synthetischen Satz geben, als nur einen solchen, der auch bloß empirisch d.i. ein Erfahrungssatz ist, mithin niemals Notwendigkeit und absolute Allgemeinheit enthalten kann, dergleichen doch das Charakteristische aller Sätze der Geometrie ist. Was aber das erstere und einzige Mittel sein würde, nämlich durch bloße Begriffe oder durch Anschauungen a priori, zu dergleichen Erkenntnissen zu gelangen, so ist klar, daß aus bloßen Begriffen gar keine synthetische Erkenntnis, sondern lediglich analytische erlangt werden kann. Nehmet nur den Satz: daß durch zwei gerade Linien sich gar kein Raum einschließen lasse, mithin keine Figur möglich sei, und versucht ihn aus dem Begriff von geraden Linien und der Zahl zwei abzuleiten; oder auch, daß aus drei geraden Linien eine Figur möglich sei, und versucht eben so bloß aus diesen Begriffen. Alle eure Bemühung ist vergeblich, und ihr seht euch genötiget, zur Anschauung eure Zuflucht zu nehmen, wie es die Geometrie auch jederzeit tut. Ihr gebt euch also einen Gegenstand in der Anschauung; von welcher Art aber ist diese, ist es eine reine Anschauung a priori oder eine empirische? Wäre das letzte, so könnte niemals ein allgemein gültiger, noch weniger ein apodiktischer Satz daraus werden: denn Erfahrung kann dergleichen niemals liefern. Ihr müßt also euren Gegenstand a priori in der Anschauung geben, und auf diesen euren synthetischen Satz gründen. Läge nun in euch nicht ein Vermögen, a priori anzuschauen; wäre diese subjektive Bedingung der Form nach nicht zugleich die allgemeine Bedingung a priori, unter der allein das Objekt dieser (äußeren) Anschauung selbst möglich ist; wäre der Gegenstand (der Triangel) etwas an sich selbst ohne Beziehung auf euer Subjekt: wie könntet ihr sagen, daß, was in euren subjektiven Bedingungen einen Triangel zu konstruieren notwendig liegt, auch dem Triangel an sich selbst notwendig zukommen müsse? denn ihr könntet doch zu euren Begriffen (von drei Linien) nichts Neues (die Figur) hinzufügen, welches darum notwendig an dem Gegenstande angetroffen werden müßte, da dieser vor eurer Erkenntnis und nicht durch dieselbe gegeben ist. (Elementarlehre I. T. Transz. Ästhetik, II. Abschnitt)

Man gebe einem Philosophen den Begriff eines Triangels, und lasse ihn nach seiner Art ausfindig machen, wie sich wohl die Summe seiner Winkel zum rechten verhalten möge. Er hat nun nichts als den Begriff von einer Figur, die in drei geraden Linien eingeschlossen ist, und an ihr den Begriff von eben so viel Winkeln. Nun mag er diesem Begriffe nachdenken, so lange er will, er wird nichts Neues herausbringen. Er kann den Begriff der geraden Linie, oder eines Winkels, oder der Zahl drei, zergliedern und deutlich machen, aber nicht auf andere Eigenschaften kommen, die in diesen Begriffen gar nicht liegen. Allein der Geometer nehme diese Frage vor. Er fängt sofort davon an, einen Triangel zu konstruieren. Weil er weiß, daß zwei rechte Winkel zusammen gerade so viel austragen, als alle berührende Winkel, die aus einem Punkte auf einer geraden Linie gezogen werden können, zusammen, so verlängert er eine Seite seines Triangels, und bekommt zwei berührende Winkel, die zwei rechten zusammen gleich sind. Nun teilet er den äußeren von diesen Winkeln, indem er eine Linie mit der gegenüberstehenden Seite des Triangels parallel zieht, und sieht, daß hier ein äußerer berührender Winkel entspringe, der einem inneren gleich ist, usw. Er gelangt auf solche Weise durch eine Kette von Schlüssen, immer von der Anschauung geleitet, zur völlig einleuchtenden und zugleich allgemeinen Auflösung der Frage. (Methodenlehre I. Hauptstück I. Abschnitt)